为实现“碳中和”和“碳达峰”的双碳战略,储能器件的需求日益增加。在此情况下,传统锂电池已不足以满足多样化和大规模的储能需求。面向各种新型电池,有机高分子功能材料具有得天独厚的优势。但传统的有机高分子材料的导电性通常较差,不利于获得高性能储能器件。而共轭配位聚合物材料因具有良好的导电性使其在诸多领域(半导体、超导体、存储、气体吸附、传感等)中具有潜在的应用前景,近几年得到了大量关注。但该类材料的结构和化学态还存在着各种争议,其材料的复杂性造成到目前为止,大部分的研究仍集中于单类原子的配位上。
光电学院王成亮教授深入研究了该类材料的结构,揭示了该类材料的理想结构及化学态,获得了高性能储能新材料(Angew. Chem. Int. Ed. 2019, 58, 14731;Chem. Commun. 2019, 55, 10856;Angew. Chem. Int. Ed. 2021, 60, 18769;Chem2021,7, 1224;ACS Appl. Electron. Mater.2021,3, 1947;J. Mater. Chem. C2021, 10.1039/D1TC03709A)。近日,在此基础上,进一步研究了两种不同原子共配位的共轭配位聚合物材料,获得了1+1>2的效果。
图1、共配位实现1+1>2的性能提升
通过将S和N用于共配位,实现了导电性、稳定性的协同提升,获得了高容量、高稳定性和良好的快充性能。相关成果发表于《能源与环境科学》上(Energy & Environmental Science,影响因子:38.532)。光学与电子信息学院王成亮教授与南京大学马晶教授是本文的共同通讯作者。上述研究工作得到了国家自然科学基金(51773071, 52173163)和中国博士后基金(2020M672323, 2021TQ0115)等项目的资助。
原文链接:https://pubs.rsc.org/en/content/articlelanding/2021/EE/D1EE02414K