网站旧版 | 学校首页 | 中文版 | English

龚荣洲

作者: 时间:2017-03-18 点击数:

姓 名:龚荣洲

职称:教授

专业方向:微波工程系

个人简介:

龚荣洲-个人简介:

教授(二级),博士生导师(微电子学与固体电子学,材料物理化学);

国防特种技术专家组成员,磁性材料与器件研究所-所长

研究方向:超材料技术、超晶格与红外波调控、微波控制材料、磁光电器件技术

联系方式:027-87547337(O,F)

rzhgong@hust.edu.cn(邮箱)

实验室地址:华中科技大学西一楼211# (办公室)

华中科技大学西一楼106、207-212(工作间)

华中科技大学西一楼125、127-131(实验室)

一、 研究条件

本所实验室经过多年研究积累,拥有的仪器设备基本满足磁性材料与器件的设计、制备、表征足不出户。

(1)材料及薄膜制备设备:离子源辅助电子束镀膜设备,德国飞驰公司的高能球磨机,磁控溅射薄膜设备,激光刻蚀加工设备,——等等。

(2)材料及器件表征设备:微波适量网络分析仪(N5244A,HP8722ES,E5071C),覆盖300kHz- 43.5GHz的反射、透射等微波传输特性;UV-NIR-IR 分析仪,覆盖185nm- 25000nm的反射、透射等光谱传输特性;材料微观分析的SEM(扫描电子显微镜+能谱仪),VSM(振动样品磁强计),微波暗室,——等等。

二、教学情况

1、材料物理化学(本科生)

2、电磁波技术与应用(研究生)

3、固体电子学导论(博士生)

三、科研项目

1、国家自然科学基金(联合基金)重点项目,极化特性调控超材料与雷达波陷阱设计,2015.01.-2018.12. 经费:460万元(主持)

2、****探索研究计划项目:一维光子带隙结构******,2015.01.-2017.12. 经费:490万元(技术负责)

3、****基金重点项目:兼容可见光****红外*****,2015.07.-2018.06. 经费:100万元(技术负责)

四、学习工作经历

1981.09. – 1986.07. 北京师范大学 化学系,本科;

1994.09. – 1998.06. 中国地质大学 地球化学,研究生(博);

1986.07. – 1998.10. 中国地质大学 材料科学与化学工程学院,助教、讲师、副教授;

1998.10. – 2001.02. 武汉理工大学 材料复合新技术国家重点实验室,博士后、研究员;

2001.03. - 现在 华中科技大学 光学与电子信息学院,教授。

五、近五年的主要科技论文

1. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. OPTICAL MATERIALS, 2016, 53: 195-200

2. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. OPTICS COMMUNICATIONS, 2016, 361: 41-46

3. A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling. JOURNAL OF OPTICS, 2016, 18(2): 25101

4. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling. APPLIED PHYSICS EXPRESS, 2015, 8(12): 122001

5. Enhanced microwave absorption of multiferroic Co(2)Z hexaferrite-BaTiO3 composites with tunable impedance matching. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 643: 111-115

6. High Magnetic Loss Mg-Cu Ferrites for Ultrahigh Frequency EMI Suppression Applications. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51(11): 2800504

7. Monodomain Design and Permeability Study of High-Q-Factor NiCuZn Ferrites for Near-Field Communication Application. JOURNAL OF ELECTRONIC MATERIALS, 2015, 44(11): 4367-4372

8. Fe3O4 cladding enhanced magnetic natural resonance and microwave absorption properties of Fe0.65Co0.35 alloy flakes. JOURNAL OF ALLOYS AND COMPOUNDS, 2015,646: 345-350

9. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles. JOURNAL OF APPLIED PHYSICS, 2015, 117(17): 17D518

10. Low loss Sendust powder cores comprised of particles coated by sodium salt insulating layer. JOURNAL OF APPLIED PHYSICS, 2015, 117(17): 17A921

11. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. ACTA PHYSICA SINICA, 2015, 64(16): 164102

12. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications. JOURNAL OF APPLIED PHYSICS, 2014, 116(5): 54905

13. Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial. APPLIED OPTICS, 2014, 53(25): 5763-5768

14. Actively bias-controlled metamaterial to mimic and modulate electromagnetically induced transparency. APPLIED PHYSICS LETTERS, 2014, 104(26): 261902

15. Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator. JOURNAL OF APPLIED PHYSICS, 2014, 115(6): 64902

16. Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 116(2): 643-648

17. Electromagnetic properties of Fe-Si-Al/BaTiO3/Nd2Fe14B particulate composites at microwave frequencies. JOURNAL OF APPLIED PHYSICS, 2014, 115(17):17C722

18. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. ACTA PHYSICA SINICA, 2013, 62(7): 74101

19. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. OPTICS AND LASER TECHNOLOGY, 2013, 48: 415-421

20. An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 111(1): 209-215

21. Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials. OPTICS EXPRESS, 2013, 21(5): 5239-5246

22. Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. APPLIED PHYSICS LETTERS, 2013, 103(2): 21903

23. Microwave Electromagnetic Properties of Flaky Magnetic Fe-Co Alloy/BaTiO3 Powder Composite Absorbers. RARE METAL MATERIALS AND ENGINEERING, 2013, 42(2): 570-573

24. Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators. APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 111(3): 483-488

25. A low-frequency wideband metamaterial absorber based on a cave-disk resonator and resistive film. CHINESE PHYSICS B, 2013, 22(4): 44102

26. An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film. CHINESE PHYSICS B, 2013, 22(6): 67801

27. Design of an ultrathin and wideband metamaterial absorber based on resistance film and fractal frequency selective surface. ACTA PHYSICA SINICA, 2013, 62(4): 44103

28. Similar structures, different characteristics: circular dichroism of metallic helix arrays with single-, double-, and triple-helical structures. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2013, 30(4): 677-681

29. Design and Performance of Ni-Cu-Zn Ferrite Film for Inductor. JOURNAL OF INORGANIC MATERIALS, 2012, 27(4):375-378

30. Design of Ultra-thin Absorbers Embedded with Fractal Frequency Selective Surface in Low Frequency. JOURNAL OF INORGANIC MATERIALS, 2012, 27(12): 1336-1340

31. Molten Salt Synthesis, Magnetic Properties and Microstructure of CoTi-Substituted Barium Hexaferrites. RARE METAL MATERIALS AND ENGINEERING, 2012, 41(2): 849-853

32. A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors. CHINESE PHYSICS B, 2012, 21(12): 127801

33. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61: 134101

34. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61: 134102

35.Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials. ACTA PHYSICA SINICA, 2012, 61(9): 94203

36. Microwave Electromagnetic Characteristics of FeCoNiB Soft Magnetic Thin Films. RARE METAL MATERIALS AND ENGINEERING, 2011, 40(10): 1840-1843

37. Absorption enhancement of fractal frequency selective surface absorbers by using microwave absorbing material based substrates. PHOTONICS AND NANOSTRUCTURES- FUNDAMENTALS AND APPLICATIONS, 2011, 9(3): 287-294

38. Extending the Bandwidth of Electric Ring Resonator Metamaterial Absorber. CHINESE PHYSICS LETTERS, 2011, 28(3): 34204

39. Molten Salt Synthesis and Magnetic Properties of BaFe12O19 Hexaferrite. JOURNAL OF INORGANIC MATERIALS, 2011, 26(8): 792-796

华中科技大学  光学与电子信息学院  联系电话:027-87558726  邮编:430074 地址:中国•湖北省武汉市珞喻路1037号 华中科技大学南五楼六楼